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We develop a microscopic theory for ac transport using nonequilibrium Green’s-function theory. By includ-
ing the self-consistent Coulomb interaction, the current conserving and gauge-invariant conditions are satisfied.
On the theoretical side, our theory can be used to calculate nonlinear ac transport properties order by order at
finite frequency when the system is driven far from equilibrium. In addition, the nonlinear ac charge response
such as ac electrochemical capacitance can also be calculated. On the application side, our theory can be
coupled to the density-functional theory to numerically predict the ac transport properties of nanodevices.
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I. INTRODUCTION

Quantum transport in nanostructures under ac bias has
been the subject of intense studies both experimentally and
theoretically.1–11 Ac response is of fundamental interest be-
cause it can probe the charge distribution and the dynamics
of the system. In addition, the frequency introduces another
energy scale into the problem which plays a role quite dif-
ferent from temperature. So far, ac has been studied for a
variety of systems including normal quantum dot systems1,3,8

as well as normal superconducting hybrid systems.6 When
the strongly electron-electron interaction is included, an ex-
actly solution of ac has been obtained in the Kondo regime.5

In addition to frequency-dependent current, transient ac,4 as
well as photon-assisted shot noise2,7 have also been investi-
gated. At low frequencies, the dynamic response of a quan-
tum capacitor can be described by a quantum capacitance in
series with a charge-relaxation resistance.9 For a conductor
that allows single-channel transmission, the charge-
relaxation resistance was predicted to be half of the resis-
tance quanta9,10 and was recently confirmed
experimentally.11 Due to the existence of quantum induc-
tance, the current accumulates a phase and lags behind the
voltage leading to a negative capacitance.12

In the theoretical treatment, the current is usually defined
in terms of conduction current, i.e., I�

c =dq� /dt, where q� is
the charge flowing in the � lead. From the continuity equa-
tion ��I�

c +dQ /dt=0 we see that the conduction current I�
c is

a conserved quantity in the steady state. Under the ac bias,
however, the conduction current is not a conserved quantity
anymore. The displacement current I�

d due to the charge
pileup dQ /dt inside the scattering region becomes important
and must be considered. The problem of current conserving
can be solved by partitioning the total displacement current
��I�

d =dQ /dt into each leads giving rise to a conserving total
current I�= I�

c + I�
d . The current partition at small bias was

achieved by Buttiker et al.13 using the scattering matrix ap-
proach. This approach has been extended to the situation far
from equilibrium using nonequilibrium Green’s-function
�NEGF� method.14 Physically, the displacement current is
due to the long-range Coulomb interaction.9 At low-
frequency limit, a microscopic current conserving theory was

developed using the scattering matrix theory9 where the dy-
namic conductance to the first order in frequency was stud-
ied. A linear-response theory was developed later to predict
weakly nonlinear ac conductance order by order in bias
voltage.15 By including Coulomb interaction, the problem of
gauge invariance can also be solved. As we know, the current
of a two-probe device should be a function of bias difference
only. The gauge-invariant condition says that the current of a
multiprobe system remains the same if all the bias are shifted
by a constant amount. By including the Coulomb potential to
the linear order in bias voltage, the second-order nonlinear
dc conductance satisfied the gauge-invariant condition.9 This
scattering approach has been generalized to predict higher-
order-weakly nonlinear dc conductance.16 Despite of all the
success in the current conserving and gauge-invariant formu-
lations, the dynamic conductance at general frequency
G����� was only treated at level of current partition.17 This
is because only a formal definition of G����� was presented
in the linear-response theory16 and an operational expression
of G����� is clearly needed. It is known that the scattering
matrix theory and linear-response theory are suitable when
the system is near equilibrium. When the system is far away
from equilibrium, a general current conserving and gauge-
invariant ac transport theory is yet to be developed.

It is the purpose of this paper to fill this gap. Using the
nonequilibrium Green’s-function theory, we have developed
a microscopic theory for ac transport. Treating Coulomb in-
teraction at Hartree level, our theory satisfies the current con-
serving and gauge-invariant conditions. In particular, we
have demonstrated our method by calculating the frequency-
dependent dynamic conductance, frequency-dependent elec-
trochemical capacitance, and various frequency-dependent
density of states. It has been recognized that in the first-
principle transport calculation, the NEGF is a better candi-
date to couple with the density-functional theory �DFT� �Ref.
18� to predict transport properties in nanodevices. With this
approach, quantitative comparison can be made between nu-
merical results and experimental results. For instance, in
charge transport through oligophenylene19 and alkanethiol20

molecular wires in contact with Au leads the currents were
found to decrease exponentially with wire length which is in
quantitative agreement with experimental data. Quantitative
analysis of nonequilibrium spin injection from Ni contacts to
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the octanethiol molecular spintronic system has also been
carried out and compared with experimental data.21 In view
of the recent success of the first-principle approach using
NEGF+DFT formalism in treating dc transport in
nanostructures,18,22–25 our theory provides an important
framework for the NEGF+DFT formalism in dealing with ac
transport.

The rest of the paper is organized as follows. The basic
formulation is presented in Sec. II where the frequency-
dependent characteristic potential and frequency-dependent
density of states are introduced. As an illustration, the
frequency-dependent current to the first order in bias voltage
is calculated with Coulomb interaction including. Section III
provides some relations among frequency-dependent density
of states and Onsager-Casimir relations. Discussions and
summary are given in Sec. IV.

II. THEORETICAL FORMULATION

We start with the model Hamiltonian ��=1�,

H�t� = Hlead + Hdot + HT.

Here Hlead is the Hamiltonian of leads given by

Hlead = �
k�

�k��t�Ĉk�
† Ĉk�,

where Ck�
† creates an electron in lead �, �k��t�=�k

0

+qv� cos��t� with �k�
�0� the energy levels in lead �, and v� is

the ac bias on the lead �. The second term Hdot is the Hamil-
tonian of the isolated quantum dot,

Hdot = �
n

�ndn
†dn + �

nm

Vnmdn
†dndm

† dm, �1�

where dn
† creates an electron in the quantum dot. Note that

we have included the electron-electron interaction into the
second term in Hdot where Vnm is the matrix element of the
Coulomb potential. In real space the Coulomb interaction is

V�x,x�� = q/�x − x�� . �2�

In the Hartree approximation, Eq. �1� becomes

Hdot = �
n

��n + Un�dn
†dn,

where the self-consistent �on the Hartree level� Coulomb po-
tential Un inside the quantum dot is defined as26

Un = �
m

Vnm�dm
† dm� . �3�

Here we only considered the Coulomb interaction, the ex-
change and correlation interactions can be treated in a similar
fashion. From the definition of the lesser Green’s function,
one has Gnn

� = i�dn
†dn�. Using the lesser Green’s function, Eq.

�3� in real space becomes

U�x� = − i� dx�V�x,x��G��x�,x�� .

From Eq. �2� we have �x
2V�x ,x��=−4	q
�x−x��. Hence Eq.

�3� is equivalent to the following self-consistent Poisson
equation �we have included time explicitly�,

�2U�x,t� = − 4	��x,t� = 4	iq�G��t,t,U�	xx, �4�

where ��x , t� is the charge density and x labels the position.
Since the lesser Green’s function is related to the retarded
Green’s function and depends on time, we have put time
index explicitly in Coulomb potential and the charge density.
The boundary condition of the Poisson equation is such that
U=V� at probe �. The third term HT is the Hamiltonian
describing the coupling between quantum dot and the leads
with the coupling constant tk�n,

HT = �
k�n

�tk�nCk�
† dn + tk�n

� dn
†Ck�	 . �5�

The current from lead � can be calculated according to
the Heisenberg equation of motion,

I��t� = − �
kn

�tk�nGn,k�
� �t,t�	 + H.c.

After analytic continuation, the current is written as4

I��t� = −� dt1 Tr�Gr�t,t1���
��t1,t� + G��t,t1���

a�t1,t�

− ��
��t,t1�Ga�t1,t� − ��

r �t,t1�G��t1,t�	 , �6�

where,

��
�t,t�� = �

k

tk�m
� gk�

 �t,t��tk�n �7�

and =r ,a ,�. Here

gk�
r,a�t,t�� = � i���t � t��exp
− i�

t�

t

dt1�k��t1�� , �8�

gk�
� �t,t�� = if��k�

�0��exp
− i�
t�

t

dt1�k��t1�� . �9�

The retarded Green’s function Gr satisfies the following
Dyson equation:

Gr = G0
r + G0

rUGr + G0
r�rGr. �10�

Note that Eq. �10� is a matrix equation with Gr, G0
r , and �r

being matrices in both space and time dimensions. For in-
stance G0

r is the Green’s function of the isolated scattering
region with the matrix elements G0

r�x ,x� , t , t�� defined as

�i
�

�t
− H0 + i�G0

r�x,x�,t,t�� = 
�t − t��
�x − x�� , �11�

where H0=�n�ndn
†dn. Here the Coulomb potential U is a di-

agonal matrix with the matrix element U�x , t�. Expanding
U�t� in terms of the amplitude of external bias v��0�=v�, we
have9,16

U�t� = Ueq + U1 + U2 + ¯ = Ueq + �
�

u��t�v�

+
1

2�
��

u���t�v�v� + ¯ , �12�

where Ueq is the equilibrium potential when there is no ex-
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ternal bias, U1�t�=��u��t�v� is the first-order correction, and
u��t� and u���t� , . . . are the characteristic potentials.9,16 Here
u��t� describes the first-order internal response due to the
Coulomb interaction and u���t� corresponds to the second-
order correction. Following sum rules on the characteristic
potential can be derived from the requirement of current con-
serving and gauge invariance: ��u��t�=cos �t and
��u���t�=��u���t�=0.27 For instance, if all the bias v��t�
are shifted by a constant amount v0, the potential landscape
will shift by the same amount. Applying this statement in the
equation U1�t�=���u��t� /cos��t�	v��t� leads to ��u��t�
=cos��t�.

A. Characteristic potential at small bias

We now derive the equations governing the characteristic
potentials at finite frequency. In Eq. �4� the lesser Green’s
function G��t , t ,U� can be expressed in terms of retarded
and advanced Green’s function using the Keldysh equation,

G��t,t,U� =� dt1dt2Gr�t,t1,U����t1,t2�Ga�t2,t,U� .

�13�

Expanding G��t , t ,U� in power series of external bias v�, we
can derive the equations for all the characteristic potentials.
To illustrate, we calculate ac in the small bias limit. Higher-
order terms can be calculated perturbatively. Expanding
Green’s function G and self-energy ��

 to the first order in
the bias v�, we have14,32

G�t,t1� = G0
�t,t1� + g�t,t1�

and

��
�t,t1� = �0�

 �t,t1� + ��
�t,t1� ,

where G0
�t , t1� is the equilibrium Green’s function and

g�t , t1� is the first-order correction. Note that equilibrium
Green’s function G0

�t1 , t2� and self-energy �0
�t1 , t2� depend

only on the time difference t1− t2, while nonequilibrium parts
depend on double-time indices t1 and t2. In energy represen-
tation, the Green’s function is written as

G0
r�E� =

1

E − H0 − Ueq − �0
r�E�

. �14�

The first-order correction for the retarded, advanced, and
lesser Green’s function gr,a,� are found by iterating Eq. �10�,

gr,a = G0
r,a��r,a + U1	G0

r,a

and

g� = gr�0
�G0

a + G0
r��G0

a + G0
r�0

�ga.

Taking the double-time Fourier transform on the first-
order correction of Green’s function g�t , t1� and self-energy
��

�t , t1� with = � ,r ,a, we find

gr,a�E+,E� = Ḡ0
r,a��r,a�E+,E� + U1���	G0

r,a,

g��E+,E� = Ḡ0
r���E+,E�G0

a + gr�E+,E��0
�G0

a

+ Ḡ0
r�̄0

�ga�E+,E� , �15�

and32

��
�E+,E� = qv������0�

 − �̄0�
 �/� ,

where v����=	v��
��+��+
��−��	. Here � is the driv-
ing frequency and � is the response frequency. We have used

the abbreviations Ḡ0
r =G0

r�E+� and �̄0�
 =�0�

 �E+�, with E+
=E+��. In the linear bias, anticipating only first harmonics
are involved, we have u��t�=�m=�1exp�im�t	u��m��. The
Fourier transform of u��t�=�d� exp�−i�t�u�� / �2	� gives
u��=u����	�
��+��+
��−��	. Note that in the Fourier
space, the sum rule for u��t� becomes

�
�

u���,x� = 1. �16�

To simplify the notation, from now on we will drop the
subscript and use Gr instead of G0

r . To make discussion
simple, we will use the wideband limit where the linewidth
function is taken to be independent of energy. In this case,

��
r,a�E+,E� = 0,

gr,a�E+,E� = Ḡr,aU1���Gr,a, �17�

and

��
��E+,E� = iq��v����

f − f̄

�
, �18�

where �� is the linewidth function and f̄ = f�E+�. In the wide-
band limit, Eq. �15� becomes

g��E+,E� = iq�
�

v����
f − f̄

�
Ḡr��Ga + iḠrU1���Gr�Gaf

+ iḠr�ḠaU1���Gaf̄ . �19�

The Fourier transform of the dynamic charge distribution
��t�= iqG��t , t�− iqGeq

� is given by

���� = iq� dE

2	
g��E+,E� . �20�

Substituting Eqs. �12� and �20� into Eq. �4�, the Poisson
equation becomes

�2u���,x� = − 4	q2dn���,x�
dE

+ 4	q2� dx����,x,x��u���,x�� , �21�

where we have introduced the frequency-dependent injectiv-
ity matrix �its physical meaning will be discussed after Eq.
�30�	,
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dn����
dE

=� dE

2	

f − f̄

�
�Ḡr��Ga	 , �22�

with its diagonal matrix element being the local frequency-
dependent injectivity dn��� ,x� /dE that is related to the
frequency-dependent local density of states

dn��,x�
dE

= �
�

dn���,x�
dE

. �23�

The frequency-dependent partial global density of states10,12

can also be obtained

dN����
dE

=� dE

2	

f − f̄

�
Tr�Ḡr��Ga	 . �24�

For later use, we also introduce the frequency-dependent
emissivity matrix dn̄���� /dE defined as

dn̄����
dE

=� dE

2	

f − f̄

�
�Ga��Ḡr	 , �25�

with its diagonal matrix element being frequency-dependent
emissivity dn̄��� ,x� /dE. In Eq. �21�, ��� ,x ,x�� is the
frequency-dependent Lindhard function defined as

���,x,x�� = − i� dE

2	
��f − f̄�Ḡxx�

r Gx�x
a + Ḡxx�

a Gx�x
a f̄

− Ḡxx�
r Gx�x

r f	 . �26�

Expanding dn��� ,x� /dE and Eq. �26� in powers of �, it is
not difficult to show that

� dx����,x,x�� = dn��,x�/dE �27�

and

� dx����,x�,x� = dn̄��,x�/dE , �28�

where dn̄�� ,x� /dE=��dn̄��� ,x� /dE. From Eqs. �27� and
�28�, we have,

�
�

Tr
dn̄����
dE

� = �
�

Tr
dn����
dE

� . �29�

Note that Eq. �27� is also consistent with the gauge-invariant
condition ��u��� ,x�=1 which can be seen by summing Eq.
�21� over �.

In the Thomas-Fermi approximation,9 we assume
��� ,x ,x��=
�x−x��dn�� ,x� /dE.28 This means that only lo-
cal response is considered. With this approximation, the
Poisson equation becomes

�2u���,x� = − 4	q2dn���,x�
dE

+ 4	q2dn��,x�
dE

u���,x� .

�30�

The physics of Eq. �30� is clear. The frequency-dependent
charge distribution on the right-hand side of Eq. �30� consists

of two parts: �1� ����=�inj���+�ind���, where �inj���
=dn��� ,x� /dE is the injected charge distribution. For this
reason dn��� ,x� /dE is called frequency-dependent injectiv-
ity. �2� �ind���= �dn�� ,x� /dE	u���� is the induced charge
distribution due to the injected charge. In solving Eq. �21�
and �30�, the following boundary condition must be used: the
total charge enclosed in the whole scattering region is zero,
i.e.,

Tr
dn����
dE

− ����u����� = 0, �31�

or for the Thomas-Fermi approximation,

Tr
dn����
dE

−
dn���

dE
u����� = 0. �32�

In Eqs. �31� and �32�, dn���� /dE is the frequency-dependent
injectivity matrix and u���� and dn��� /dE are diagonal ma-
trices with matrix element u��� ,x� and dn�� ,x� /dE, respec-
tively.

B. Ac at small bias

In the following, we shall calculate the ac in the presence
of Coulomb interaction and show that the boundary condi-
tion Eq. �31� and �32� leads to the conservation of current.

The ac to the linear order in external voltage can be cal-
culated similar to the lesser Green’s function. Expanding
Green’s functions up to linear order in bias, we have

I��t� = − q� dt1 Tr�Gr�t,t1���
��t1,t� + gr�t,t1���

��t1,t�

+ G��t,t1���
a�t1,t� + g��t,t1���

a�t1,t�	 + H.c.,

where the equilibrium terms cancel to each other because the
current is zero when the external voltage is absent. Taking
the Fourier transform, we have,

I���� = − q� dE

2	
Tr�G0

r�E+���
��E+,E� + gr�E+,E��0�

� �E�

+ G0
��E+���

a�E+,E� + g��E+,E��0�
a �E�

− �0�
� �E+�ga�E+,E� − ��

��E+,E�G0
a�E�

− �0�
r �E+�g��E+,E� − ��

r �E+,E�G0
��E�	 .

In the wideband limit, we find with the help of Eqs.
�17�–�19�

I���� = q2� dE

2	

f − f̄

�
Tr
i�Ḡr − Ga���v����

− Ḡr�
�

��v����Ga�� + i���ḠrU1���Ga� .

�33�

Equations �30� and �33� are main results of this paper. Note
that in Eqs. �30� and �33� all the quantities have been ex-
panded in terms of equilibrium Green’s function. In calculat-
ing linear ac transport properties in nanodevices, one has to
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compute two Coulomb potentials: �1� equilibrium Coulomb
potential Ueq appeared in Eq. �12�. With Ueq obtained, the
Green’s function is given by Eq. �14�. �2� Nonequilibrium
Coulomb potential u� in the presence of ac bias. The poten-
tial u� determines the contribution from the displacement
current.

1. Current conservation

Now we examine the current conservation condition. It is
easy to see that

�
�

I� = iq2� dE

2	
Tr
Ḡr�

�

��v����Ga − ḠrU1���Ga��
�� f̄ − f� .

Using the relation �in the wideband limit�29

� dE

2	
Tr�ḠaU1���Gaf̄ − ḠrU1���Grf	

=� dE

2	
Tr��Ḡr − Ga�U1���	

f − f̄

�
, �34�

we have

�
�

I� = − �q2�
�

Tr
dn����
dE

− ����u�����v���� .

Note that in obtaining u���� Eq. �31� must be satisfied.
Hence we see that the current is conserved up to the first
order in bias if the Coulomb interaction U1�t� is included.
From the definition of dynamic conductance I����
=��G�����v����, we find

G����� = q2� dE

2	
Tr�− i�Ḡr − Ga���
�� + Ḡr��Ga��

+ i���Ḡru����Ga	
f − f̄

�
, �35�

where u���� is the solution of Eq. �21�. It is clear that the
dynamic conductance consists of two contributions: particle
current �terms that does not involve u�� and displacement
current. Note that the current conservation condition gives
��G��=0. It is easy to show that ��u����=1 gives ��G��

=0. In deriving Eq. �35� we have used the wideband limit, it
is straightforward to go beyond this limit.

2. Dynamic conductance

We now examine the dynamic conductance in more detail.
We introduce an unscreened local dynamic conductance ma-
trix

g����� =� dE

2	

f − f̄

�
�i�Ḡr��Ga
�� − Ga�Ḡr��
��

+ Ga��Ḡr��	 , �36�

such that q2 Tr�g��	 is equal to the particle current in Eq.

�35�. Using the Fisher-Lee relation,30 it is straightforward to
show that

Tr�g��	 =� dE

2	

f − f̄

�
Tr�
�� − s��

† s̄��	 , �37�

which agrees with the scattering matrix approach.13 In addi-
tion, if we set U1=0 in Eq. �33� it recovers the frequency-
dependent current derived by Buttiker et al.13

In terms of g�� and the frequency-dependent emissivity,
Eq. �35� can be written in a more compact form similar to the
linear-response theory15

G����� = q2 Tr
g����� + i�
dn̄����

dE
u����� . �38�

Note that the frequency-dependent injectivity and emis-
sivity satisfy

�
�

g����� = − i�
dn����

dE
�39�

and

�
�

Tr�g�����	 = − i� Tr
dn̄����
dE

� . �40�

As will be clear in Sec. III that in the absence of magnetic
field, Eq. �40� is also valid without the trace and therefore
makes it symmetric between Eqs. �39� and �40�.

In Eq. �38�, the second term is a matrix multiplication. In
the Thomas-Fermi approximation, it becomes

G����� = q2 Tr
g����� + i�
dn̄���,x�

dE
u���,x�� , �41�

where the trace is over position x. Now we consider the
quasineutrality approximation, i.e., when the local charge is
zero at any point ��� ,x�=0. From Eq. �30� we have
dn��� ,x� /dE− �dn�� ,x� /dE	u��� ,x�=0. Hence, in the
quasineutrality approximation, the dynamic conductance is
given by

G����� = q2 Tr
g����� + i�
dn̄���,x�

dE

dn���,x�
dE

/
dn��,x�

dE
� .

From Eqs. �29�, �39�, and �40�, it is easy to show that
��G�����=��G�����=0.

In terms of emissivity, another frequency-dependent par-
tial global density of states can be defined,

dN̄����
dE

= Tr
dn̄����
dE

� = i� dE

2	

f − f̄

�2 �
�

Tr�
�� − s��
† s̄��	 .

�42�

C. Electrochemical capacitance

To discuss electrochemical capacitance, we assume that
the scattering region of a two-probe system can be roughly
divided into two regions �I and �II with total charge QI���
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and QII���, respectively. The general electrochemical ca-
pacitance coefficients can be defined by15

Q���� = �
�

C�����v���� +
1

2�
�

C��v����v��� + ¯ .

�43�

Charge neutrality condition Eq. �31� in the scattering region
ensures that ��Q����=0. The general bias dependent of Q�

can be obtained by expanding Eq. �13� in terms of bias. To
the lowest order in bias, the charge Q� is given by

Q���� = − q2�
��

dx�
�

dn���,x�

dE
v����

−� dx����,x,x��u���,x��v����� , �44�

from which we obtain the frequency-dependent electro-
chemical capacitance,

C����� = − q2�
��

dx
dn���,x�
dE

−� dx����,x,x��u���,x��� . �45�

In the discrete potential approximation,31 we use UI and UII
to represent the Coulomb potential in regions I and II, re-
spectively. The classical capacitance C0 can be defined as

QI�t� = C0�UI�t� − UII�t�	 �46�

or

QI��� = C0�UI��� − UII���	 . �47�

In the absence of magnetic field and dc transport, Eq. �44� is

Q���� = − q2
dn����
dE

v���� −
dn����

dE
U����� . �48�

From Eq. �44�, �46�, and �48�, we obtain12

q2

CII���
=

q2

C0
+

1

dnI���/dE
+

1

dnII���/dE
. �49�

III. RELATIONS AMONG FREQUENCY-DEPENDENT
DENSITY OF STATES

A. Orthogonal systems

In the absence of magnetic field and spin-orbit interaction,
the system belongs to the orthogonal ensemble and the
Hamiltonian H is a real symmetric matrix with H=HT. So
the Green’s function �inversion of EI−H+ i�I� is also a sym-

metric matrix. From the fact that �Ḡr��Ga	T= �Ga��Ḡr	, we
have

dn����
dE

= 
dn̄����
dE

�T

, �50�

or

dn���,x�
dE

=
dn̄���,x�

dE
, �51�

and

���,x,x�� = ���,x�,x� , �52�

i.e., frequency-dependent Lindhard function is symmetric. If
spin-orbit interaction is present while magnetic field is ab-
sent, the Hamiltonian is a real quaternion matrix. If we are
only interested in the charge transport, Eq. �51� is still valid
where the trace over spin is implied.

B. Unitary systems

In the presence of magnetic field B, the system belongs
the unitary ensemble. Due to the microreversibility of the
scattering matrix, we have

s���B� = s���− B� , �53�

the following relation is valid from Eq. �37�,

Tr�g���B�	 = Tr�g���− B�	 . �54�

From Eqs. �39� and �40�, we arrive at

dN���,B�
dE

=
dN̄���,− B�

dE
. �55�

To prove the relation for local frequency-dependent injectiv-
ity and emissivity, we note that Eq. �53� together with the
Fisher-Lee relation implies

Gr�B� = �Gr�− B�	T �56�

and similarly ���B�= ����−B�	T. Hence

dn���,− B�
dE

=� dE

2	

f − f̄

�
�Ḡr�− B���Ga�− B�	

=� dE

2	

f − f̄

�
�Ga�B���Ḡr�B�	T �57�

or

dn���,B�
dE

= 
dn̄���,− B�
dE

�T

�58�

with its diagonal matrix element satisfying

dn���,x,− B�/dE = dn̄���,x,B�/dE �59�

which is the generalization of the static case.9 Similarly, for
the frequency-dependent Lindhard function we have

���,x,x�,B� = ���,x�,x,− B� . �60�

Now we will show that when the Coulomb interaction is
included the dynamic conductance G����� still satisfies a
similar relation as that of Eq. �53�. To proceed, we first note
that the first term in Eq. �38� obeys Tr�g���� ,B�	
=Tr�g���� ,−B�	. For the second term, we introduce the
Green’s function for u���� as follows:9

YADONG WEI AND JIAN WANG PHYSICAL REVIEW B 79, 195315 �2009�

195315-6



�2g��,x,x�� = 4	q2� dx����,x,x��g��,x�,x�� − 4	q2
�x

− x�� . �61�

From Eqs. �60� and �61� we have

g��,x,x�,B� = g��,x�,x,− B� . �62�

In terms of the Green’s function g���, Eq. �38� is

G����� = q2 Tr
g����� + i�
dn̄����

dE
g���

dn����
dE

� .

�63�

Using Eqs. �57� and �62�, we finally have

G����,B� = G����,− B� . �64�

For a two-probe system, the current conserving and gauge-
invariant conditions give rise to

G11��� = − G12��� = G22��� = − G21��� . �65�

From Eqs. �64� and �65� we conclude that G����� is an even
function of magnetic field for two-probe systems.

IV. DISCUSSION AND SUMMARY

So far, we have demonstrated the current conserving and
gauge-invariant formalism in the small bias limit. Higher-
order corrections to the current can be obtained perturba-
tively order by order. Here we give a general proof of the
current conserving formalism, i.e., ��I��V ,U�=0 if the Cou-
lomb potential is included. To proceed, we make double Fou-
rier transform on Eq. �13� and obtain

� dtG��t,t,U�exp�i�t� =� �dE/2	�G��E+,E,U� ,

�66�

where E+=E+�. Hence Eq. �4� becomes

�2U��,x� = 4	iq� �dE/2	��G��E+,E,U�	xx. �67�

In solving this Poisson equation, we use the following
boundary condition:

� �dE/2	�Tr�G��E+,E,U�	 = 0, �68�

to make sure the total charge conservation in the scattering
region �see discussion below Eq. �70�	. Making double Fou-
rier transform on Eq. �6�, we have

I���� = − q� dE

2	
� dE�

2	
Tr�Gr�E + �,E����

��E�,E�

+ G��E + �,E����
a�E�,E� − ��

��E + �,E��Ga�E�,E�

− ��
r �E + �,E��G��E�,E�	 . �69�

In the Appendix, we shall show that

�
�

I���� = q�� �dE/2	�Tr�G��E+,E�	 . �70�

Using Eq. �66�, Eq. �70� becomes

�
�

I���� + iq�Q��� = 0, �71�

where Q��� is the Fourier transform of the total charge ac-
cumulation inside the scattering region. Equation �71� is
clearly the Fourier transform of the continuity equation with
the second term in Eq. �71� being the charge accumulation in
the scattering region. Obviously, if the Coulomb interaction
is not considered the current given in Eq. �69� is only the
particle current. Once the displacement current is included
by solving Poisson equation Eq. �67� with the condition Eq.
�68�, the second term in Eq. �71� is zero and the current is
conserved or charge is conserved.

In summary, we have developed a microscopic theory for
the time-dependent quantum transport using nonequilibrium
Green’s-function theory. The theory is current conserving
and gauge invariant. The key to this formalism is the inclu-
sion of the self-consistent Coulomb interaction. We have de-
rived the expression for the ac in the small bias limit. At
finite bias, one can include the Coulomb interaction by in-
cluding higher order of characteristic potential order by or-
der. Our theory can be useful in the nonequilibrium situation
and can be used in the first-principle transport calculation
where the nonequilibrium Green’s function is coupled with
the density-functional theory.
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APPENDIX

From Ref. 32, we have the following relation:

E1GE1E2

r −� dEHEGE1−E,E2

r − ��rGr�E1E2
= 2	
�E1 − E2� ,

�A1�

where we have assumed that the Hamiltonian may depend on
time and used the abbreviation G�E ,E��=GEE�. Here HE is
the Fourier transform of H�t�. Multiplying Eq. �A1� by
�Gr	E2E�

−1 and summing over E2, we have

��Gr	−1�E+E� = 2	E+
�E+ − E�� − HE+−E� − �E+E�
r ,

��Ga	−1�EE−�
= 2	E
�E − E−�� − HE−E−�

− �EE−�
a ,

where E+=E+� and E−�=E�−�. From which we obtain
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��Gr	−1�E+E� − ��Ga	−1�EE−�
= 2	�
�E+ − E��

− ��E+E�
r − �EE−�

a � . �A2�

Multiplying Eq. �A2� by Ga�E1 ,E� from the left and
Gr�E� ,E2� from the right, one finds,

GE1E2−

a − GE1+E2

r = 2	�� dEGE1E
a GE+E2

r

−� dEdE�GE1E
a ��E+E�

r − �EE−�
a 	GE�E2

r .

Therefore,

� dE

4	2Tr�Gr�� − ��Ga	E+E =� dE1dE2

4	2 Tr�GE1+E2

r ����E2E1

− ����E2E1
GE1E2−

a 	

= −� dE

4	2 �2	�GE+E
�

− ���rG��E+E − �G��a�EE−
	� ,

which is equivalent to Eq. �70�.
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